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ABSTRACT

An algorithm for the calculation of acoustic normal modes in the ocean is
described. The algorithm is valid for an arbitrary sound speed and density profile
in the water column and bottom. Losses due to volume absorption in the water and
bottom, surface and bottom roughness, and shear waves n the bottommost layer
can be calculated as perturbations.

The essential feature of the algorithm is a two-ended shooting method in
which the trial solution is started separately at the surface and bottom and
numerically integrated to a matching depth in the middle, usually near the
minimum sound speed. The trial solution is iterated until a continuous function
with a continuous derivative is obtained. Shooting from both ends results in a more %
stable algorithm and gives more accurate eigenfunctions than are obtained using
conventional single-ended shooting methods.

This paper describes the theory and general numerical implementation of
the algorithm. Por completeness, equations are given for calculating group
velocities, propagation loss in a range-dependent environment, and losses due to
volume absorption, surface and bottom roughness, and shear waves in the
bottommost layer.

The two-ended shooting algorithm has been implemented in the computer
program PROLOS, which has been used extensively at DREA since 1979. In this
paper results of numerical computations will be presented, including the AESD
Workshop Test Cases and comparison of predictions with some measured data from
a shallow water propagation loss experiment.
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RESUME

On d6crit un algorithme de calcul des modes acoustiques normaux
en mer. L'algoritbme est applicable & un prof il arbitraire do densit6
et do vitesse du son dans la colonne d'eau et au fond. Leas
affaiblisseuents dus i l'absorption par la masse do l'eau et du fond, A
la rugosit6 do la surface et du fond et auxc ondes do rotation dans la
couche inf6rieure peuvent fitre trait6s comme des perturbations.

L'6l6ment essential do cot algoritbme eat une m~thode do "tir"
V* bilat6ral dans laquolle la solution d'essai eat appliqu6e s6par6ment A

la surface ot au fond et est int6gr6e num6riquement juaqu'& uno
profondeur do roncontre au milieu, habituellement pr&s du point do
vitesse du son minimum. on amfiliore par it~ration la solution dlesaai
jusqu'& ce qu'on obtienne une fonction continue avec une d6riv6e
continue. Le "tir" bilat~ral donne un algorithme plus stable et des
fonctions propres plus pr6cises quo los m6thodes habituelles do "tir"
unilateral.

Le present document contient des renseignements sur la th~orie ot
le calcul num~rique g6n~ral do l'algorithme. Pour plus do clarti, on
donne los 6quations do calcul des vitesses do groupe, do
l'affaiblissement par propagation en fonction do la distance et des
affaiblissemonts dus ik l'absorption par la masse, i la rugosit6 do la
surface et du fond et aux ondes do rotation dana la couche inf~rieure.

L'algorithme de "tir" bilat6ral a 6t.6 int6gr6 au programe
informatique PROLOS qui a 6tfi largement utilis6 au CRDA depuis 1979.
Dana le pr6sent document, on donne los r6sultats des calcula
num6riques, y compris ceux des cas typos do l'atelier AESD, ot on
compare des valeurs pr6vues avec cortaines mesures tir6es d'une
exp~rience d'affaiblissement par propagation en eau peu profonde.
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1. INTRODUCTION

To predict underwater acoustic propagation from a knowledge of the
environment, a number of models - primarily ray theoretic and normal modes -
have been introduced. Such models have been applied to a variety of cases: deep
and shallow water, high and low frequency, range-independent and
range-dcpcndent environments. For shallow water studies normal mode models
have been found to be the most appropriate, particularly at frequencies below
I kHz. Until 1978, DREA had been using a version of the normal mode program by
Bartberger and Ackler [1978] of the United States Naval Air Development Center.

-' Since this program was written originally for a CDC computer, its conversion to
run on a DEC-20 system revealed two numerical problems - overflow of exponent
and loss of precision. Both problems arose from the shooting technique used to
solve for the normal mode wave numbers and mode functions. Although the
program could have been recoded to overcome these deficiencies, an improved
algorithm was developed.

This paper describes the alternate algorithm which avoids both the exponent
overflow and the loss of precision of the Bartberger shooting algorithm by using a
two-ended shooting technique Instead of a single-ended method. It is also quite
general in that an arbitrary sound speed and density profile can be handled. Loss
mechanisms, such as volume attenuation in the water and bottom, surface and
bottom roughness, and shear waves can be incorporated as perturbations. The
formulation is given in terms of the pressure rather than the velocity potential,
since the former allows density changes to be more conveniently handled, and
pressure is a measurable quantity.

The discussion that follows will first give a short description of normal mode
theory and present the equations for the normal modes and the perturbative losses.
For completeness the equations for calculating 'group velocities and propagation
loss in a range-dependent environment are also included. This is followed by a
description of the two-ended shooting method as it applies to normal mode
calculations in underwater acoustics. The necessary equations are presented and
cast in dimensionless co-ordinates for use in computations.

The numerical algorithm can be implemented in a number of ways. Two
computer codes have been developed and have been used extensively in the shallow
water studies at DREA. One [Ellis and Leverman, 1982] uses a layered
environmental model similar to Bartberger; another [MacEachern, 1983] uses a
combination of the Noumerov method and a Runge-Kutta ordinary differential
equation solver. Results of numerical computations are also presented, including
the AESD Workshop test cases [Spofford, 1973] and comparison of predictions with
some measured data from a shallow water site.



2. THEORETICAL BACKGROUND

2.1 The Normal Mode Equations

The environment that can be handled by normal mode theory is depicted in
Fig. 1. It consists of a stratified medium in which the sound speed and density can
vary arbitrarily with depth, but which do not change with range. In its exact form
the boundaries must be smooth and the medium must not be lossy. However, it is
possible using perturbation methods to extend the theory to include the effects of
volume absorption in the water and bottom, scattering from rough boundaries,
weak range-dependence, and shear waves in the bottommost layer. For a CW point
source of frequency f operating at range r=O and depth zo, the pressure field P at

* .. an arbitrary depth z and horizontal range r from the source is given by:

N (1) -ic.t
P(r,z,t) = 'SZ u (z ) u (z) H (k r) e + continuous spectrum. (1)

P(Z )nl n o n o n

In the above equation, S is the source strength (see below), p is the density, N is the
(1)number of trapped modes, the un are the normal mode functions, H is the Hankel

n 0
function of zeroth order and first kind, k is the horizontal wave number of the nth

n
mode, 42rf is the angular frequency of the source, and t is the time. The time
dependence is not important for what follows so will be dropped for notational
simplicity. In order for modes to be trapped, the bottommost layer must have a
sound speed which is greater than the minimum sound speed. A rough estimate of
the number of trapped modes is N-hf/c , where c is the minimum sound speed

and h is the water depth. A better approximation (Ellis, 1982], derived using WKB
theory [e.g., Schiff, 1968] and neglecting density changes, is:

Pig. 1. The normal mode environmental model. Both sound speed and
density can vary arbitrarily and discontinuously with depth.

2

• . . ."



N=[[1/z+(2hfr /c )(I- c ) ]2 (2)

where [[xi] is used to denote the integer of part of x, cB is the sound speed in the

bottommost layer (extending from depth zB to o), and i is a dimensionless quantity

which depends only on the shape of the sound speed profile. The values of n are
usually in the range 0.5 to 1.0. As examples, -n=l for a two-isovelocity layer
model, -n=0.79 for a parabolic profile, and -n=0 .6 7 for a bilinear profile.

If N > 1, the continuous spectrum usually gives negligible contribution to the
pressure at ranges greater than several water depths, and is usually neglected in
calculations.

There are a number of conventions for what is meant by a source of unit
strength. The convention implied by Eq. (1) is that the pressure is unity at a unit
distance from the source; that is, near the source the pressure is given by:

P(x,t) = SIx-x 0I -' exp[i(k x-x 0 - (t)] (3)

where x = (r,z), k =/c 0, and c is the sound speed at the source position x . S has-- 0 0 0

numerical value of unity, but has the appropriate units of pressure times length.

Once the pressure has been obtained using Eq. (1), the propagation loss can
be obtained from:

PL =-0 lOg I0P/P ref  (4)

where Pref is the pressure at unit distance from the source. Combining Eqs. (1), (3)
and (4) gives the expression for propagation loss in terms of the normal modes and

wave numbers:

Nr N1 2PL(r,z) =-10 log yE u (zu WH (k r) (5)

1 0 p(Z 0) n=l n o n o n

To obtain the pressure field, Eq. (1), it is necessary to solve the normal

mode equation to obtain the normal mode eigenvalues k2 and eigenfunctions u (z).n n

They are the solutions to the second order differential equation:

p(Z).I d I dun(z)]+[*-- -- -k 2 ]u(z)u0 (6)
dz p(z) dz c 2 (z) n n

and satisfy the conditions:

3



(i) u(z) is continuous, which corresponds physically to the pressure being

continuous.

(ii) (du /dz)/p(z) is continuous, which corresponds to the vertical particle

n

n
. velocity being continuous.

(iii) u (0)=0, which corresponds to zero pressure at the ocean surface.

(iv) The trapped modes have finite normalization. If the bottommost layer
has a constant density and sound speed, the trapped modes behave as:

U (z) - A exp[(k 2 -.. ) . (7)
C B zI

Under the above conditions, there are a discrete set of solutions to Eq. (6),
with wave numbers k constrained by:

n

>k >k > ... >k > (8)c 1 2 N
m B

The normal mode functions are orthogonal with respect to the weighting function
-1

p and are normalized to unity, that is:

Jr u (z) u (z) dz 6 (9)

o p(z) m n mn

where 6 is the Kronecker delta.
man

2.2 Modal Loss Calculations

If any form of loss is introduced into the system, the normal mode wave
numbers become complex with a small imaginary component; that is:

K =k + 16 (10)n n n

where K is now the complex wave number. The expressions for the pressure and
n

propagation loss are unchanged except that K now replaces k . If the losses are
n n

small, they can be treated as perturbations of the lossless normal mode solutions.
The imaginary part 6 is the sum of the various attenuation mechanisms:

n

6 = 6 bottom  
6 water 6 scatt 6 shear6 =6 +6 +6 +6 + ..

n n n n n

4



where 6 bottom is the loss due to volume absorption in the bottom layers, 6 water isn n
,-.. scatt
the loss due to volume absorption in the water column, 6 is the loss from then

shear
coherent field due to scattering from rough surfaces, and 6 is the loss due to

n
shear waves in the bottommost layer. Expressions for the losses are given below.

2.2.1 Bottom absorption

The volume absorption coefficient a for the bottom layers experimentally
seems to be linearly dependent on frequency [Hamilton, 1974] and is often given in
the units dB/length at 1 kHz. Thus, at a given frequency, the absorption
coefficient is:

-C /1000 (12)
20 log e

10

which has units of nepers/length, or simply inverse length, the same as the wave
number kn

For a bottom with an arbitrary sound speed, density and absorption profile,
the attenuation coefficient due to volume absorption is given by:

2
C(z) u (z)

6 bottom = f ) h n dz. (13)
n n h p(z) c(z)

The derivation of this formula is given in Appendix B. The attenuation due to any
layer can be obtained by restricting the range of integration to that layer. If the
bottommost layer supports shear waves, then it is not included in the integration;
the equations of Sec. 2.2.4 are used instead.

2.2.2 Volume absorption in the water column

The attenuation due to absorption of acoustic energy by the water column
can be treated in an identical manner to the absorption by the bottom layers.

2
However, the plane wave absorption coefficient varies as f rather than linearly as
for the sediments. The absorption coefficient at any frequency can be obtained
from a formula such as Thorpe's [1967]:

hi [ 0.lf2 40f 2
r 2 10-- (14)

w 1 + (f/1000) 4100 + (f/1000) 0.9144

a has units of dB/meter. The corresponding modal attenuation coefficient s then

(Appendix B):
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2

6 (C C/Pkn) ( dz (15)
-w w -f- 0 c(z)

where p is the density of water and where:

c =a /2Olo e.wwcw =aw /2log 10 e

2.2.3 Surface and bottom scattering

Scattering losses due to rough boundaries can be included in an approximate
way. By ignoring the contribitlons from the non-specularly reflected energy, and
using the Kirchhoff approximation, Kuperman and Ingenito [1977) find the modal
attenuation coefficient for surface and bottom roughness to be:

S-scatt Cr 0 r (o du(o) 1
6 S-stt - (16)

n 2p(o)k n Ldz

6 B-scatt 1 n r nh- +[n(h)u(h (17)
n 2p(h-)k, L z J [unh)

n

where

yn(z)= (CO 2/c 2(z)_ 2) I/a

a and a 1 are the r.m.s. surface and bottom roughness heights, and the

notation h means that the various functions are to be evaluated )ust above the

water-bottom interface. Also note that if w/c(o) S kn or w/c(h-) S k, then the

corresponding scattering losses are zero.

These formulae are valid in the small wave height approximation:

2 2

and 2 o y (h << 1. (18)

6



2.2.4 Shear waves in the bottommost layer

When the speed of shear waves in the bottommost layer c is considerably
5

less than the minimum speed of the compressional waves at all depths, the losses
can be treated by perturbation methods. A formula is given in a report on the
SNAP normal mode program [Jensen and Ferla, 1979]:

2 +u (z) 13 p0 2
shear . [1 + . ]Q() (19)

n 8k (19)

where z refer to points just above C-) and Just below (+) the top of the bottommost

layer,

2I_ 2c 2(ZB n

2

2 0(2  Ci)
(k2 _ ) I/

2 n C2Z+

and

1 - IR 12  if Real3 2a• - Q( (20)

2. 2 Imag(R) if Real 2 2 < 0.

R(O3) is the plane wave reflection coefficient [Brekhovskikh, 1980],

R(3 ) 2 . C2s p (1 3/1 2 S2 
s  (21)

2. p0C~s + P ( /)s + P.
2 aI C25 2 '0 . 2/ )5 3. 2

where

2
=(1 2 

)-/

0' k

5 2 nC
5
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2
* C [ 2 (kc/ca)']C2S : [1-2 5C/)]

S =1-C
• 2S 2S

Note that this formula contains losses due to both the compresslonal and

shear wave losses.

2.3 Group Velocities

The speed at which acoustic energy is transported in mode n at frequency w
(n)is given by the group velocity vg = Ido/dknl. This expression is often evaluated by

solving the normal mode Eq. (6) at two frequencies c)*Ao) and forming the finite

difference estimate vg = IAc,/Ak 1. However, in addition to the extra

computational effort, the technique is subject to numerical error.

An exact and alternate expression for the group velocity [Tolstoy, 1956;
Koch et al, 1983] is given by:

U2((n) ~un(z) -
v (  [) -- .[ n dz] - (22)
" k n p(z) c (z)n

This formula is similar to the expression for the volume attenuation coefficient
(Appendix B], and can be derived in a similar manner [Chapman and Ellis, 1983].
Because of the similarity of the above integral with Eqs. (13) and (15), the group
velocity can be obtained with essentially no additional computation.

2.4 Extensions for Comparison with Data

The expressions for the pressure and propagation loss, Eqs. (1) and (5), can
be easily extended to facilitate comparison with measurements in a weakly
range-dependent environment and for a broadband source.

The expression for the propagation loss given in Eq. (5) is a coherent
summation of the modes that includes all the interference terms. It is sometimes
more appropriate to sum the modes incoherently to obtahu

N
IPL(rz) 10 log o[Tr/P(Z )]2 E IUn(z ) u (Z) H 1)(k r)1 2}

0 0 nl n o n o n



This is a smooth function of range since:

(1) 2 -26 r
IH (k nr) - (2/iTk r)e n

0 Ul 1

where the asymptotic form of the Hanke function has been used, and the mode
attenuation 6 , Eq. (10), has been included. The neglected terms in the propagationn
loss are of the form:

N ,

(2/wr) E u (z ) un(z) Um(z o ) u (z) (k k ) expli(k -k )r - (6+6 )]
nm= n
nEm

which are expected to be small for a number of reasons. First, the oscillating
terms exp[i(k -k )r] will tend to make the range-averaged value small. Second, ifn m
averaged over a frequency band, there will be additional smoothing.

The incoherent propagation loss should be used cautiously for deep water
environments since the regions of high and low intensity including convergence
zones are averaged out. However, in shallow water it is a useful quantity, and for
broadband sources is more meaningful than the coherent propagation loss.

Por an environment in which the sound speed profile and water depth are
slowly varying, mode coupling can be neglected and the adiabatic approximation
holds [Pierce, 1965]. The form of the expressions for the pressure and propagation
loss is unchanged except that:

(i) u (z ) is obtained from the environment at range r=0;n o

(i) u (z) is obtained from the environment at range r;
n

(il) k is the average value of the wave number in the range 0 to r; and,
n

(iv) the number of modes is determined from the minimum value of N at all
ranges between 0 and r.

In principle, the normal modes should be calculated at every range for which the
propagation loss s desired. In practice, the mode functions and wave numbers are
evaluated at a relatively small number of ranges and interpolated for intermediate
ranges.

9
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3. NUMERICAL IMPLEMENTATION

A common procedure for solving for the normal mode eigenfunctions and
eigenvalues is to numerically integrate the normal mode Eq. (6) using a shooting
method. In this method a trial value is chosen for k , then starting at some large

n
value of z deep in the ocean bottom with suitable values of u and du/dz, the
solution is numerically integrated toward the ocean surface* at z=O. In general,
the solution obtained from the trial value of k will not satisfy the condition

n
u (0)=O, but based on the calculated values of u and u' at z=0 a new value of k can
n n

* . be estimated. The procedure is repeated until the value of u at z=O is sufficiently
n

*.small, or until k Uhas the required degree of accuracy.

3.1 Some Difficulties With Shooting Methods

Two numerical problems can occur with this method of shooting, namely,
exponent overflow and loss of precision. In solving the normal mode equation in
underwater acoustics, exponent overflow will occur if the starting point is chosen
too deep, that is if z is too large. Although less likely near the surface, it can also
occur there if the sound speed increases near the surface, that is if c>ca/k . The

increase in sound speed near the surface can cause a second problem as well - loss
of precision - because the true solution gets increasingly buried in the roundoff and
truncation errors as the integration proceeds toward the ocean surface. These
difficulties will be discussed later in more detail, and a method will be proposed for
getting around these problems.

o/ 4
C

Z V4

Fig. 2. Normal mode solution u (z) (dashed line) superimposed on a
4

sound speed profile c(z) (solid line).

*One cannot start at the surface and integrate downward into the bottom because
numerical roundoff would cause the functions to grow exponentially even for the
"exact" k where the functions should decay exponentially.

n
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Before elaborating on these points, however, It is useful to look at some
properties of the mode function. Pig. 2 shows a mode function superimposed on a
sound speed profile at the phase velocity v = w/k of the mode. A number of

n n-
properties of the mode function to note are as follows: from the boundary condition
at the surface,

(1) u (0)=O; I
and from y as defined following Eq. (17),

2-

(2) for z < z 1 then y < 0, and u (z) has an increasing exponential type of

behaviour. The solution is approximately given by:

u (z) = exp[l (z)] - exp[-I (z)] (23)n 2.
where,

I(z)=f 'Y z1dz
on

(3) for z < z < z , then u (z) is oscillatory. The solution is approximately
2 n

given by:

u (z) = A(z) sin(I (z) + 4)) (24)n 2

where,

I (z)f y (z) dz
2 ZI n," 1

A(z) is slowly varying, and 4) Is the phase, approximately r/4, at the
turning point z,.

(4) for z > z , u (z) has a decreasing exponential type of behaviour. The
2 U

boundary condition at infinity requires that only the decreasing
exponential be present; thus,

u (z) = C exp [-I (z)] (25)

where C is a real constant, and

I(z) =' t In(z)t dz. (26)

(5) In the interval z < z < z, u (z) has n-1 zeros.

F.,

e,.1

.1 .- - - - - - - - - - - :



The numerical problems occur in the exponential regions. Suppose we

started at z=O and integrated the differential equation downwards toward z1 .

Although the increasing and decreasing terms have equal amplitude at z=O, the
increasing exponential soon dominates and the second term gets lost in the
roundoff error. Any error that occurs in the coefficient of exp[-I (z)] is soon

damped out, and the method is stable. The only problem that might occur is that
1(z) becomes large enough so that exp[I(z)] may cause overflow in computer
calculations. On the other hand, suppose that we have the correct solution at z=z

and want to integrate (shoot) upwards toward z-0; the procedure leads to loss of
precision. Suppose there is a slight roundoff so that the coefficient of exp[-I (z)] is

no longer unity but 1+c, where c is a very small quantity. Even with no further
roundoff, the solution is no longer zero but:

u (o) = -c exp[l (z (] (27)

so we have lost I (z )ln(10) significant digits in the accuracy of the mode

function. This in turn will cause problems in the algorithm that predicts the next
trial value of k . [The final accuracy of k is not necessarily degraded, since then n
numerical procedure can be terminated as long as k is sufficiently accurate, evenn
though the condition u (0) < tolerance is not satisfied. However, convergence mayn
be slower, and the mode function will be less accurate for z < z ; that is, near the

surface where solutions are very often needed.] This loss of accuracy can be
eliminated by integrating downward from z=0. Similarly, the solution for large
values of z can be accurately obtained by integrating upward toward the surface.
The numerical problems do not occur for z > z since we are integrating upwards
and any part of the unwanted solution gets quickly damped out.

The method of matching the upward and downward solutions and getting an
improved estimate for the eigenvalue is discussed in the next section.

3.2 The Two-Ended Shooting Method

The previously discussed loss of precision encountered in the single-ended
shooting method can be remedied by using a two-ended shooting method. The
problem of exponent overflow in numerical computations is easily handled, so
discussion is postponed until later. We first discuss the two-ended shooting method
and the iteration procedure for refining the accuracy of the trial eigenfunction, or
wave number.

The method described here is a generalization of that of Blatt [1967] for the
solution of the Schr6dinger equation of quantum mechanics. The generalization
allows for density changes in the acoustic medium, a feature that does not occur in
the quantum mechanical problem. The generalized algorithm which is used to
refine the approximate eigenvalue Is obtained from an application of the
variational principle, and is derived in Appendix C.

12
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3.2.1 Outline of the shooting method

"" A brief sketch of the two-ended shooting method will now be presented
using Fig. 2 for reference. First, a matching depth z is chosen between the

turning points z and z ; a convenient choice for this depth is the minimum sound
1, 2

speed, since the solution is always oscillatory at the minimum sound speed. Next,

an estimate is made for the elgenvalue k2 and the turning points z and z are
n 2 2

determined. Then, suitable limits of integration z and zb are determined. Ina

practice these limits are often the ocean surface and the top of the bottommost
layer, respectively. Suitable boundary conditions are chosen at z and zb and the

differential equation is integrated (down) from z to the matching depth z , and
a m

(up) from zb to z . The integration procedure gives the function u and itsm n

derivative at z from the two integrations. Since the normalizations are

arbitrary, one of the mode functions can be renormalized to give a function which
is continuous, but which in general has a discontinuous derivative. Provided the
number of zero crossings of the mode function is correct, an improved

approximation for the eigenvalue k2 is given by (Appendix C):
n

r I di (z du ()

k 4k p(z) dz p(z + dz n m
k 2 k 2 W 5m (28)

n nb un2 (z)
J" dz

zdza P(z)

The above equation is the key formula for the improvement of the eigenvalue. The

notation z- or zm means that the functions p or u are to be evaluated just above
(-) or just below (+) the matching depth zm . The procedure is repeated until the

correction term is small enough, and/or until the derivatives match to sufficient
accuracy. Sin- , the method is derived using the variational principle, it is a second
order method and converges rapidly.

3.2.2 The initial guess for the eigenvalue

The second order eigenvaiue iteration procedure described above will only
work if the trial mode function has the correct number of zero crossings. Thus,
some other method must be used to get an approximate value for the eigenvalue in
the correct range. For the first mode the WKB method could be used to get an
approximate value for k, or a crude trial function could be used with the

variational principle. An even cruder method is simply to take c/c and o/c as
B m

limits for k and to use the shooting method together with a binary search. If
{.I
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there are too many zero crossings of the mode, the trial value of k is too small; if
n

there are too few zero crossings, the trial value is too large. The range of possible
values for k is halved at each iteration. Once the number of mode crossings is
correct the faster second order method can be used.

For higher modes the upper limit on k is the wave number of the mode

(n-i). The lower limit is not as easy to determine,' although o/cB could always be

used. For an isovelocity profile, which is the worst case, an approximation to k isU
given by:

2

k 2 = k 2 (n-2) . (29)n n-i1 2

Thus, if we take the upper limit from the above equation, with a safety factor of
two for good measure multiplying the second term on the right, we should be safe.A conservative estimate for the lower limit of k is thus:

n

mliCa 2 _ -2 /a 30k =max -[k 1 -(-2)(0
U c 1L h

The trial value of 2k for higher modes can be an extrapolation procedure
based on the values of k for the previous two or three modes.n

3.2.3 The number of trapped modes
At a given frequency the number of modes trapped by a given profile can be

determined by applying the shooting method once, with a trial value of IkN equal to

c CB The number of zero crossings are then counted and the correction of Eq.
(28) applied to k . If the new value of k N Is greater than c./cB then the mode is

trapped; i.e. there are N modes. If the new value of k N is less than co/cB' only N-I

modes are trapped.

This procedure can also be used to determine which modes have a phase
velocity less than some specified phase velocity. By applying the procedure twice,
the number of modes between two phase velocities can be calculated.

- I.



3.2.4 Prevention of exponent overflow

In the shooting procedure, the integration limits z and z must be chosen so
a b

that the function u (z) is effectively zero for z < z and z > zb . This can be done -'
na b*

approximately by evaluating the WKB integral:

1(z)= $ IYWI(z)I dz (31)
zt

where zt is one of the turning points z or z., y has been defined earlier, and the
1

integral is evaluated upward from z or downward from z . The numerical
1 2

integration does not have to be performed with any great accuracy, so the
trapezoidal rule is sufficiently accurate. When the value of the integral has
reached some value, say D, then the mode function will be reduced in amplitude by
a factor of exp(D) compared with its value at the turning point. The depth z or zb

a bat which the integral exceeds D is then used for the starting point for the I
(accurate) numerical integration of the differential equation.

3.2.5 Initial values for the shooting procedure

To obtain mode functions which have an approximate value of unity at the
turning points, suitable values of u and u' should be chosen at z and zb.

Near the surface or z
a'

u(z , ) ifz =0 andz >0 (32)

a sin,[I(z)] a 1

u(z= exp[-I (z ] a > 0 (33)

In either case,

u'(z) = Y(z ) u(z ). (34)
a a a

In the bottom, since the solution behaves as exp[-I (z)], the starting

conditions are:

U() = exp[-l (zb)] (35)

Uiz T -( bu(Z b) (36)

15
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3.3 Discussion

If the speed of sound at the surface is greater than the phase velocity of the
mode; i.e. [(o/c(o)]%k, then the two-ended shooting method is superior to

one-ended shooting methods. Also, if the sound speed profile is such that
[wc(0)]>k , then the two-ended shooting method offers no disadvantages over the

11
one-ended shooting methods; (unless, the eigenvalue refinement procedure of Eq.
(28) happens to be superior). If the sound speed profile has two or more local
minima, as would occur for example in a surface duct, then for modes which have
several turning points, loss of precision will occur in integrating between the two
minima. This loss of precision will be about the same no matter how we integrate
through the sound speed maximum, whether by a one- or a two-ended shooting
method. However, the two-ended method has the advantage that any loss of
precision near the surface is avoided, and moreover the method described in Sec.
3.2 has promise for isolating the two regions if necessary. Thus, there seems to be
no penalty in using the two-ended shooting method and for many sound speed

*profiles greater precision and stability can be achieved compared to the
conventional single-ended shooting methods.

4. RESULTS
Two computer codes have been developed which use the two-ended shooting

technique. One PROLOS/MODES [Ellis and Leverman, 1982; Leverman, 1982] uses
a layered environmental model similar to Bartberger [1973]; PROLOS has been used
extensively at DREA since 1979. A more recent program PRLOSS/NORMOD
[MacEachern, 1983] uses a combination of the Noumerov method and a
Runge-Kutta ordinary differential equation solver.

In this section we present some results based on using these models: the
AESD Workshop Test Cases, mode loss calculations, group velocity calculations,
and comparison with shallow water propagation loss measurements.

4.1 ARSD Workshop Test Cases

Figs. 3a-3c, show the profiles used as test cases for the AESD Workshop on
low frequency modelling [Spofford, 1973]. Some of them are quite difficult tests of
normal mode programs. The original tests had units of feet and feet per second;
here they have been converted to metric using the exact conversion factor of
0.3048 m per foot.

16
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Fig. 3. Sound speed profiles for the AESD Workshop Test Cases.

AESID TEST CASE 1
PACIFIC PROFILE
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3(a) - Test Case 1: Pacific profile.

AESID TEST CASE 2
NORTHEAST ATLANTIC PROFILE
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3(b) - Test Case 2: N\ortheastern Atlantic profile.
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Fig. 3 (Cont'd)

AESD TEST CASE 3
SHALLOW WATER
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3(c) - Test Case 3: Shallow water profile.

Figs. 4a-4e show the propagation loss calculations for five test cases: two
frequencies 300 and 25 Hz for Test Case 1, one frequency for Test Case 2, and two
frequencies 500 and 50 Hz for Test Case 3. Calculations were performed using the
PROLOS/MODES normal mode program, with 500 homogeneous layers of equal
thickness in the water column. The sound speed used in each layer was obtained by

first interpolating between the input profile points so that c- (z) was linear, then
using the average value of the interpolated sound speed in each layer. No earth
curvature correction, absorption losses, or other losses are included in the
calculations. Calculation times were about 4 to 5 seconds per mode on a
DEC-2060 computer for elgenvalue accuracies of 15 digits. Typically only about 5
iterations of the second order metnod, Eq. (28), are required.

As mentioned above, some of these test cases are quite difficult tests of
normal mode models, and there is considerable variation in the results presented at
the AESD Workshop [Spofford, 1973]. Indeed many of the normal mode programs
could not handle all the tests. There do not seem to be benchmark solutions for
most of these cases but our predictions are in reasonable agreement with other
models. The only difficulty we encountered with these profiles was in Test Case 2,
the northeast Atlantic profile, which has two ma)or sound channels separated by a
local sound speed maximum. In this case the mode function 4 fails to converge
after 30 iterations although the wave number seems accurate. The problem seems
to be due to the fact that the mode has a large amplitude in the upper duct, and a
small amplitude in the lower duct where the matching depth was chosen.

18



Fig. 4. Propagation loss versus range for the AESD Workshop Test Cases.

PACIFIC SURFACE DUCT - 300 Hz
""' .'" 50C .... .... I.... t.... I.... i...... i
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4(a) - Test Case IA: frequency 300 Hz, source depth 91.44 m, receiver depth
27.432 m. The solid line is for the surface channel only with a
half-space below; the dashed line is for the entire profile but with
modal phase velocities confined to the range 1536 to 1539.24 m/s.

PACIFIC PROFILE - 25 Hz
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4(b) - Test Case 1B: frequency 25 Hz, source depth 253.8984 m,
receiver depth 863.4984 m.

19



, , .. , -, - : '-l L. . - ,, - 77_ .-:- - .M ,! . . . . . . .- w - I u -vm V,! I . , . . I _ , . _

Fig. 4 (Cont'd)

NORTHEAST ATLANTIC PROFILE - 50 Hz
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4(c) - Test Case 2: frequency 50 Hz, source depth 243.84 m,

receiver depth 1097.28 m.

SHALLOW WATER - 500 Hz
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4(d) - Test Case 3A: frequency 500 Hz, source depth 6.096 m,
receiver depth 12.192 m. The dashed line shows the loss
when the modes are summed incoherently.
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Fig. 4 (Cont'd)

SHALLOW WATER - 50 HZ
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4(e) - Test Case 3B: frequency 50 Hz, source depth 6.096 m,
receiver depth 12.192 m.

Of particular interest is Case 1A, the Pacific surface duct at 300 Hz, where
normal mode methods would be expected to have difficulties. Calculations were
performed using the surface duct only with a half-space (p = 1, c = 1539.24 m/s)
below 152.4 m, as well as for the entire profile with phase velocities confined to
the range 1536 m/s to 1539.24 m/s. Fig. 4(a) shows that the effect of using the
whole profile is to reduce the propagation loss somewhat, and to cause the nulls to
be somewhat filled in. No computational difficulties were encountered in spite of
the two-duct nature of the profile and the higher frequency than Case 2.

There is a benchmark result [Stickler, 1975] for Case 3B where there is only
one trapped mode, near cutoff. In this case, the continuous spectrum, neglected in
our model, is important. Our results agree with Stickler's results when he excludes
the contribution of the continuous spectrum.

4.2 Mode Attenuation Coefficients

The AESD test cases discussed in Sec. 4.1 did not include any loss
mechanisms, other than geometrical spreading. Fig. 5 shows the attenuation
coefficients of mode 1 as a function of frequency for the AESD Test Case 3. The
following parameters were used for the calculations:
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Bottom absorption coefficient a = 0.2 dB/m-kHz
Surface roughness a - 0.2 Zn

0
Bottom roughness a = 0.2 m

Shear speed in bottom c = 200 m/ss

Shear wave absorption coefficient as = 1 dB/m-kHz.
5

The PRLOSS/NORMOD model [MacEachern, 1983] was used for these calculations,
since the individual modal attenuation coefficients were readily available and it
was possible to do multiple frequencies conveniently.

10.00000....
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, 0.10000
6-

0.01000
"00 -o.-- 

"  
.
"
'

-J 0.00100 /--
f -BOTTOM CS-O

- -_ _.BOTTOM CS-200
0,00010 --- WATER

* - .B-SCATT

0.ooo0o - -- S-SCATT

100 1000
Frequency (Hz)

Fig. 5. Attenuation coefficients of mode 1 for AESD Test Case 3 with
various assumed loss mechanisms: BOTTOM CS - 0 [Eq. (13)
with c = 0]; BOTTOM CS = 200 [Eq. (19)]; WATER [Eq. (15)];

S
B-SCATT [Eq. (17)]; and S-SCATT [Eq. (16)].

Note that all the losses, except the bottom loss calculated by the
perturbation formula, Eq. (13), approach 0 as the frequency approaches cutoff from
above 50 Hz. The surface scattering loss increases to a maximum near 80 Hz, then
decreases to 0 near 180 Hz when the phase velocity of mode 1 becomes less than
the sound speed at the surface. At high frequencies the volume absorption in the

water and the bottom scattering loss behave as f2 . The bottom loss decreases with
increasing frequency since the grazing angle becomes smaller and the mode
function does not penetrate as deeply into the bottom.
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Notice that the losses with shear waves included are less than the losses
with c = 0. Further calculations show that the effect of shear waves is negligible

s
here since the bottom is so lossy anyway. The problem is that the two formulae for

4 calculating bottom losses, Eqs. (13) and (19), are inconsistent, a problem that needs
further investigation.

4.3 Group Velocities and Mode Functions

The group velocity rather than the phase velocity determines the speed at
which energy is transported for a broadband signal. For a multilayered

* environment, the group velocity of each mode can show a rather complicated
frequency dependence with several local minima and maxima. Chapman and Ellis
[1983a] have shown that the mode functions can be used to give an intuitive
understanding of the group velocity.

Figs. 6a and 6b [Chapman and Ellis, 1983a] show group velocity curves and
mode !unctions for mode 5 in a three layer model: water, p., 1, h 100 m, c

1500 m/s; silt, P 1, h 100 m,c = 1650 m/s; rock,p = 2,h = o, c 4500
m/s, where the hi refer to layer thicknesses. The maxima in the group velocity

curves at 50 and 73 Hz correspond to a "resonance" in the silt layer. The maximum
near cutoff at 18.92 Hz occurs because most of the normalization of the mode
function occurs in the high-speed rock layer. The minima near 20 and 90 Hz occur
when the equivalent ray angle in the silt or water is nearing the critical angle with
the higher speed layer below. The higher speed layer does not contribute enough to
increase the group velocity however.

The group velocity and mode functions were calculated using the
S.- PROLOS/MODES program and some small utility programs.

4500

1600

E-
>1400

W 1200

Boo

10 20 50 100 200 500 1000
FREOUENCY (Hz)

Pig. 6a. Group velocity versus frequency for mode 5 for a three-layer
model. Symbols refer to mode plots in Fig. 6b.
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MODE AMPLITUDE (ARBITRARY UNITS)

50 WATER <

.1 .. 1.9 1. 3 50 58.. 90..,0
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250- 1&.92 1%3 50 58 73 90 200 500
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Pig. 6b. Amplitude of mode 5 as a function of depth for the three-layer model
The frequencies correspond to the points marked (x) in Pig. 6a.

4.4 Comparison With Shallow Water Data

It is usually much more difficult to obtain good agreement with
experimental results than with other models. In shallow water the main difficulty
is in obtaining accurate environmental information, particularly about the sea bed,
for input to the modeL

Pig. 7 shows a comparison of propagation loss predictions with
measurements at a shallow water site. The measurements were made in summer
conditions in a range-dependent environment with water depth varying between
115 and 155 m, and a sandy sediment layer overlying a semi-consolidated bottom.
The sediment properties were obtained from an independent geo-acoustic model
based on the analysis of a vertical incidence seismic profiler. The calculations
were done by the adiabatic range-dependent normal mode model PROLOS. There
is good agreement between the model and measurements at practically all ranges
and frequencies. This shows about the best agreement that one is likely to obtain
in shallow water, and is especially gratifying since it was not necessary to tune the
geo-acoustic parameters to improve the fit. More details about the model and
experiment are given by Ellis and Chapman [1984].
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Pig. 7. Measured and modelled propagation loss versus range for a range
dependent shallow water site. Measured: 0 64 Hz, A~ 256 Hz,
0 1024 Hz. Modelled: solid lines.

4.5 Discussion

In addition to the results shown earlier in this section, the two-ended
shooting technique has been used extensively in shallow water calculations at
DREA since 1979; in addition to the papers quoted earlier in this section see: [Ellis
and Chapman, 1980], (Chapman, 1980], (Chapman, 1983], [Chapman and Ellis, 1983]
as well as various other DoEA reports. The method has worked successfully on all
shallow water profiles and bottom models that we have tried and at frequencies up
to 3000 Hz. This is not to say that we have always been able to get good
agreement with our experimental measurements; but rather that the environmental
inputs are inaccurate or the model does not account for certain phenomena.

One specific thing that is lacking is the ability to handle shear waves when
the bottom Is hard (e.g. granite with c - 3000 ms) or consolidated (e.g. limestone

5
or chalk with c i1000 ms). In the former case our algorithm could easily be

generalized to handle a bottom half-space since It would only involve a change in
the boundary condition at zab In the latter case the shear speed is too high for

perturbation techniques to be applied, and the mode functions and wave numbers
would be complex since c < c(z) for z in the water. See [Ellis and Chapman, 1984]

for more discussion.
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In deep water the model neglects the continuous spectrum (or equivalently
the steep rays) which may be important at short ranges. As well, the computation
time increases since the number of modes is proportional to water depth. Other
techniques such as the fast field method or parabolic equation may be more
attractive. However, if long range propagation results are required, normal mode
theory is often adequate or preferable. In such cases the algorithm would be quite
useful, especially if a restricted range of phase velocities is all that needs to be
computed. Since a two-ended shooting technique is used, the high sound speed near
the surface is not a problem, as would be the case in single-ended shooting
methods; the only problem that seems to arise (in range-independent cases) is in
the two duct problems such as AESD Case 2 where there are two strong, well
isolated sound channels. In such cases a multiple shooting technique or a finite
difference approach might have to be used rather than the method described here.

5. SUMMARY AND CONCLUSIONS

We have described a two-ended shooting method that has been used for
normal mode calculations at DREA since 1978. It is a technique borrowed from
quantum mechanical calculations and generalized to handle density changes.

For completeness we have included loss mechanisms needed to compare
model predictions with experiment, and have shown a variety of results. These
include propagation loss calculations for standard test cases, mode functions and
group velocities, model-data comparisons, and attenuation losses due to surface
and bottom volume absorption, surface and bottom roughness, and shear wave
losses in the bottom. Ways in which the method could be extended or improved are
also discussed.

The method has been successfully applied to all shallow water profiles that
we have attempted, and at frequencies up to 3000 Hz. We have not always
obtained good agreement with experimental measurements, but this seems to be
due to inaccuracies in the environmental information or the fact that our model
does not account for certain things (e.g. high speed shear waves in the bottom).

In deep water environments the model usually performs well, although it of
course neglects the continuous spectrum (or equivalently, the steep rays) which
may be important at short ranges. Well isolated sound channels (such as the AESD
Workshop Test Case 2) can cause some of the mode functions to be inaccurate at
frequencies above 100 Hz. On the other hand, the algorithm using the layered
environmental model has no trouble with AESD Test Case IA, a surface duct at 300
Hz, even when the complete profile is used.
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Appendix A: Notation

x ~space co-ordinate (x,y,z) or (r,z,'B)

X position of source (O,z 0O)
_0 0

r range co-ordinate

z depth co-ordinate

p density

PW density of water

c sound speed

LCO frequency, angular frequency ca.2nf

t time

P pressure

u mode function
n

h, hl water depth, layer thic~mess

%0 Hankel function of zeroth order and first kind

k wave number

k wave number of the n-th discrete normal modeU

6 Imaginary part of the wave number of the n-th mode

K complex wave number of the nth mode; K. k + 16nn n n

cm minimum sound speed

n' c B sound speed in bottommost layer

S source strength

PL propagation loss in dB

* .*IPL incoherent propagation loss in dB
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6 Kronecker delta

mn

a attenuation coefficient (dB/length at 1 kHz)

C attenuation coefficient (nepers/length) 1
a ,a r.m.s. heights of rough surface and bottom

0 1

R plane wave reflection coefficient ..._

yn(z) local vertical wave number

S2, 13 vertical wave numbers used to determine reflection coefficientj

(n)
Vg group velocity of mode n

I(z) phase or exponent integral

4) phase shift at a mode turning point

z ,z upper and lower turning points of mode function
. 2

Za b upper and lower limits for the numerical integration of the d.c.

z matching depth for the two-ended shooting method

Dimensionless Variables

x u z/h normalized depth

V(x) = [h /c(z)] 2  dimensionless sound speed

Qn= hk2 dimensionless eigenvalue

w = h/ u dimensionless eigenfunctiou

dw du
w h . /2 . dimensionless derivative

n dx dz

s(x) p(z)/p w  dimensionless density
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Appendix B: Absorption as a Perturbation

If absorption is introduced into the medium, the plane wave becomes
attenuated; that is,

ikr lkr -cr(B)e e e (B-D

where c is the attenuation coefficient in nepers per unit distance. This is
equivalent to letting the local wave number of the sound speed become complex;
that is,

. k(z) = co/c(z) + I c(z) . (B-2)

The corresponding normal mode wave number also becomes complex:

K =k +16. (B-3)
n n

The imaginary part of 6 can be obtained by a perturbation calculation, in

which the squares of small quantities are neglected. We start with the normal
mode equation

d 1 n ] + [k 2 (z) -K 2 ] u (z)=0 (-4)

dz pz) dz n "

First, we multiply Eq. (B-4) by [p(z) - 'u *(z), where u * is the complex conjugate of

un . Then we take the complex conjugate of Eq. (B-4) and multiply it by [p(zll-"ulz).

Next, subtract the two equations and integrate from zero to infinity, giving:

du du *(z)r odun* z)d u (z) d(I U A]dz

0 n diz p(z) dz n dz p(z) dz

2u (z u* (z)
+ J '{[k(z) - k (z)] - (K 2 - K *2 n n dz -0. (B-5)

o n n p(z)

The integrand of the first equation can be written:

u*(z) du u (z) du*(z)
;[n n -n n (B-6)

dz p(z) dz p(z) dz

and since u (0)=0, and lim u (z) 0 0, the integral is zero. Also, if the imaginary

parts of k(z) and K are small,
n
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- 2 =41k 6 (B-7)
n n n f

k 2(z) - k*(z) = 4j c(z)/c(z) (B-8)

Therefore from Eqs. (B-5)-(B-7), we obtain:

c(zu (z) u* (z)fO A n dz

6 co -0 p(z) c(z) (B-9)
n k u (z) U*(z)

dz
0 p(z)

If the mode functions are approximated by their unperturbed values, the
integral in the denominator is )ust the normalization (unity). Moreover, if the
unperturbed mode functions are used, the integrand of the first integral in Eq.
(B-5) is zero everywhere, and not only at the end points. The attenuation due to
absorption In any layer is given by

z W c(z)u 2 (z)=6 - dz . (B-10) "

n k z p(z) c(z)

For bottom absorption zi 1 = h, and z=

The above formula can also be used to calculate the volume absorption due
to the water, by using 0 and h as the limits of the integration.

For an infinite half-space in the bottom (i.e. the bottommost layer),

u (z) = u (h) exp[-y n(Z-h)], z>h (B- 11)

U U Un) .

2

fh u 2 (z) dz = (B-12)

6B co C B un(h)

n k YnPBCB
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Appendix C: Iteration Procedure for the Two-Ended Shooting Method

The variational principle tells us that if we have a differential equation of
the form:

H(x) u (x)=K u (x) (C-1)n nn

where H is some differential operator, and v is a trial eigenfunction satisfying then
appropriate boundary conditions, then an approximation Q to X is given by:

n U

f -L v (x) H(x) v (x dx
Pn(x) n U (C-2)

I -- v (x) dxp x) n

where p(x) is the appropriate weighting function and the integral is performed over
the interval of the boundary value problem.

In the two-ended shooting method, we have a trial function v n(z) which

satisfies the normal mode equation:-

d+ 1 d 1 }v(z)= v n (C-3)

dz p(z) dz p(z) c z) n p(z)

on the two intervals o z<z , and z > zm , that is, everywhere except at . Qn

2
is the trial approximation to the solution kn. The function v (z) is continuous, but

[p(z)]-'Lv '(z) is discontinuous at z = zm , By taking H(x) to be the quantity f.... in
n I

Eq. (C-3), we can use Eq. (C-2) to obtain a better approximation Q, :

Qn f m' vn(z) H(z) vn(z) dz + f+* v (z) H(z) vn(z) dz

In
zz m

+
Z

+ f m v (z) H(z) v (z) dz. (C-4)
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For notational simplicity in Eq. (C-4) the function v (z) has been assumed to be

normalized to unity, so the denominator term is absent. Since H(z)v (z) = Q v (z)n n n
on the intervals 0 < z < z Inand z > z the first two integrals can be evaluated to
give:

v (z)
I +I =Q f, " dz=Q .(C-5)

1 2 n o P(z)

The final integral of Eq. (C-4), although integrated over an infinitesmally small
interval, gives a finite contribution due to the presence of the derivatives in H(z).
It can be evaluated using integration by parts to give:

Z +l dv v (z) dv z+ z + dv
f v (z)-E d -]dz=----. In -f In [ ]2 dz . (C-6)

n d (z) dz p(z) d ~)d
m In In

Since the integral term on the r.h.s. of Eq. (C-6) is negligible, the improved
estimate Q nis given by:

dv (z+) 1 dv (z)
v (z )(.- m - - mmrn

n mn p(z+) dz P z dz

Q =Q 4 In In (C-7)
0 n v Z)
f~z dz

In Eq. (C-7), the denominator has been re-introduced so the expression can be used
with trial functions which are not normalized.
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Appendix D: Dimensionless Co-ordinates

It is often useful for numerical purposes to define the variables in terms of
dimensionless quantities. The calculations can then be done independently of the
units used.

A dimensionless depth co-ordinate can be defined in terms of the water

depth h as:

x = z/h. (D-1)

If the following definitions are made:

V(x) = [h./c(hx)]2 (D-2)

Q =h 2 k 2 (D-3)
n n

s(x) = p(hx)/p w  (D-4)

dwthen the normal mode Eq. (6) can be written:

s(x) d0 (D-5)
dx s(x) dx n a

where the w are the new normal mode functions normalized so that:

O s -x)w 2x)dx= 1. (D-6)

0 TI

In terms of the dimensionless mode functions:

u (hx)= p h w x) (D-7)n n

du (hx) dw ()
hI n (D-8)

dz dx
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The constraints on the eigenvalues become:

'- 1 2 cmB

The number of modes, of course, does not change.

The boundary conditions do not change, so w (0) =0, w nand p w ,are

continuous, and the behaviour of w for large x Is:
U

w Wx - exp(-g x) (D- 1)

where,

n [Q -h 2 Ca2  (D-11)
n 2
C B

The Iteration formula for the eigenvalues can be written as:

+
w (x)W w(X

w (x )[_ I M n M)
UrIn +

s~x ) S(x)
Qnew Q olr In (D- 12)nk n 2(X

Jo SWz
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